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Summary

This document forms the final report for the project Verified OS Interface Code Synthesis,

AFOSR AOARD Grant FA2386-14-1-4093.

The aim of the project was to address the correctness problem for operating system (OS)

interface code by automated code/proof co-generation. In particular, we investigated a suit-

able specification language for OS interface code, automated code generation, and automated

proof generation for this generated code.

The outcome of the project is that we have solved the fundamental challenges, but more work

is required to integrate these results into the larger proof framework of the seL4microkernel to

be directly usable in practice. Beyond the stated project goals, our solution approach required

and enabled us to address a more fundamental challenge: the integration of different inter-

active theorem proving systems without sacrificing correctness guarantees. While again more

work needs to be done to fully complete this integration in a way that is usable for a larger au-

dience, this result means that the strong binary verification automation tools from the HOL4

theorem prover, which were used for the verified ML compiler CakeML, can now also be used

in the Isabelle/HOL system that was used for the verified seL4 microkernel. This combination

increases proof productivity and enables larger, more expressive systems to be verified in the

future.

© 2016 CSIRO Verified OS Interface Code Synthesis | 3

DISTRIBUTION A. Approved for public release: distribution unlimited.



4 | Verified OS Interface Code Synthesis © 2016 CSIRO

DISTRIBUTION A. Approved for public release: distribution unlimited.



Contents

1 Introduction 7

2 Reasoning about C and Assembly Code 9

2.1 Background: System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 seL4: Microkernel System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A System Call DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Verification Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 C Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Assembly Code Verification . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Reasoning Automatically About Assembly 21

3.1 Compiling the Interface Code to Assembly . . . . . . . . . . . . . . . . . . . . 22

3.2 Decompilation into Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Transferring Results Between Theorem Provers . . . . . . . . . . . . . . . . . 24

3.3.1 Proof traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 OpenTheory portable theory packages . . . . . . . . . . . . . . . . . 26

3.3.3 Aligning theory libraries . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Conclusion 31

4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Implications of these Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

© 2016 CSIRO Verified OS Interface Code Synthesis | 5

DISTRIBUTION A. Approved for public release: distribution unlimited.



6 | Verified OS Interface Code Synthesis © 2016 CSIRO

DISTRIBUTION A. Approved for public release: distribution unlimited.



1 Introduction

The central question of this project was how to ensure the correctness of Operating System

(OS) interface code, using proof-producing code synthesis. Its aimwas to demonstrate the tech-

niquewith a tool for the formally verifiedmicrokernel seL4; however its research outcomes are

more widely applicable to other OS kernels.

OS interface code sits at the boundary between user-level application programs written in a

programming language such as C, and the OS kernel itself, which typically provides a language-

independent application binary interface (ABI).

From a system-wide security and safety perspective, this code is part of the low-level trusted

computing base of any trusted user-level component in the system. Its correctness is therefore

critical to the safe and secure operation of the overall system. Unfortunately, its correctness is

also harder than usual to achieve.

   kernel   
   function

user     
code  

API
code

error
checking

kernel-leveluser-level

assemblyC ABI

Figure 1.1: OS interface (API) code in context with user and kernel code.

The main reason for this is that such code simultaneously crosses two boundaries: between

user-level and kernel-level, and between high-level and assembly-level language. Algorithmi-

cally, such interface code is shallow and straight-forward, but the details of compiler calling

conventions that bridge, for instance, C to assembly are tricky for humans to adhere to, and

kernel ABI specifications can be large and repetitive.

Traditionally, such code is written manually and not formally verified. Although interface code

tends to be executed often, and be therefore well tested, its repetitive, shallow, but tricky

nature makes human error likely. In our experience the quality of interface code in rarely-used

OS functionality is often low and exhibits a higher-than-usual defect rate.

Manual, interactive formal verification, as has been demonstrated for the seL4 microkernel

[Klein et al., 2009], is not directly a good fit for this problem for similar reasons: the correctness

properties are repetitive and hard to phrase, proofs about low-level assembly are tedious, and

since they are highly platform dependent, they will have to be updated often.
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The current state of the art, used for instance in the OKL4 and seL4 kernels, is to produce OS

interface code automatically from a small domain-specific language (DSL) or XML specification.

This reduces the likelihood of human error, but does not eliminate it andmakes the code gener-

ator part of the trusted computing base. For high-assurance systems, a more robust approach

is needed.

This project proposed to not only automatically generate the interface code, but to simultane-

ously generate the correctness statements as well as corresponding machine-checked proofs

of those properties. The result is high-assurance OS interface codewith strong formal evidence

generated from a high-level specification by fully automatic push-button technology.

This document reports the final outcomes of the project. We begin in Chapter 2 by summaris-

ing the original work plan for the project, and in particular the initial approach taken to reason

about the combination of C and assembly in which OS interface code is written, using the theo-

rem prover Isabelle [Nipkow et al., 2002, Nipkow and Klein, 2014]. While reporting the results

of this work we explain how, while executing that plan, we saw the opportunity to achieve

much higher levels of fidelity in reasoning without sacrificing on soundness or trustworthi-

ness, using a different approach. This new approach and its results we explain in Chapter 3.

This approach involved carrying out all reasoning at the assembly level after compiling the C

portions of the OS interface code, using an external automated proof-producing toolset, in

the HOL theorem prover [Slind and Norrish, 2008], then soundly translating those proofs into

Isabelle (thereby automatically reconstructing them in Isabelle), where they can in future be

integrated with theorems proved about the verified microkernel itself.

Chapter 4 summarises the results of the project at a high level, and their potential impact into

the future, as well as considering potential future work in this area.
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2 Reasoning about C and Assembly Code

In order tomotivate the initial approachwe took to the automated verification and synthesis of

OS interface code, we first discuss the function of OS interface code in Section 2.1. Section 2.3

then describes the domain specific language constructed to synthesise seL4 interface code. In

Section 2.4 we discuss the approach we trialled to verify this code. While this approach was

very intuitive as we explain in Section 2.5, it presented limitations in terms of compositionality

and automation. This ultimately led us to the approach we describe in Chapter 3.

2.1 Background: System Calls

The purpose of OS interface code is to implement the interface between the operating system

kernel and application code that runs on top of the kernel. An OS kernel provides a number of

services to the applications that it hosts. When an application wishes to request a service from

the kernel, it does so by making a system call, which causes execution of special instructions

that suspend execution of the application. In response, the kernel takes over and begins exe-

cuting on the application’s behalf, in order to provide the service requested by the application.

Once the kernel is finished, it returns control back to the application which picks up executing

where it left off when it made the system call.

Typical system calls include creating new threads, or configuring access to hardware devices,

or communicating with other application components in the system. An important difference

between application execution (before and after the system call) and kernel execution (during

the system call) is that the former is unprivileged, while the latter is privileged. Indeed, this is

why the applicationmust request the service from the kernel by making a system call, because

only the kernel is privileged enough to provide it. Forcing the unprivileged application to always

go through the kernel also ensures that the kernel can mediate on all interactions between

applications and on all device configuration, which is necessary for instance to ensure that

mandatory security policies are enforced [Loscocco et al., 1998].

Transferring execution, at the time the system call is made by the application, from the un-

privileged application to the privileged kernel necessitates switching the execution mode of

the processor (in this case we are using the ARMv7 processor architecture). The application

accomplishes this task by issuing the swi (“software interrupt”) instruction, which causes an

interrupt to be generated. The CPU receives this software interrupt, and in response switches

execution mode to begin executing privileged code located at a fixed address in memory. This

privileged code must first determine which particular system call has been requested (e.g.

whether create_thread() or send_ipc() etc.), and decode any arguments given to it by the
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application. To do so, it examines the contents of the CPU registers, as they were left by the

application, as well as the contents of specific locations in memory. This means, to pass this

information to the kernel, the application places specific values into its registers, and writes

certain values into memory at specific locations, before it issues the swi instruction.

Once the system call is complete and control returns to the application, it has to do the reverse

in order to decode the results of the system call: the kernel leaves these results in specific

registers and memory locations, which are interpreted by the unprivileged application code.

At a high level, we say that before the system call the applicationmarshals the data describing

the system call it is requesting and any arguments to that call to the kernel; after the system

call returns the application must unmarshal the results of the system call.

2.2 seL4: Microkernel System Calls

On seL4, the verified kernel for which we synthesised the OS interface code for this project,

the application/kernel interface through which system call data is marshalled works as follows.

Each thread has a dynamically configurable, designed region ofmemory, called its inter-process

communication (IPC) buffer.

An application identifies the system call it wishes to perform, and its arguments, to the kernel

by placing the data for the call into the application’s IPC buffer, and then calling the swi in-

struction. Likewise, the results of the system call form the kernel to the application are placed

into the application’s IPC buffer by the kernel once the system call has completed.

When marshalling data into the IPC buffer before making the system call, and similarly when

unmarshalling the data afterwards, the IPC buffer is interpreted as a set of message registers

(MRs): a fixed set of word-sized slots in the IPC buffer. Additionally, data for the first few MRs

is allowed to be placed in hardware registers for improved performance in the case of system

calls with short payloads. In seL4 on ARM, the first four MRs are backed by hardware registers

‘r2’, ‘r3’, ‘r4’ and ‘r5’.

Thus the job of seL4 interface code is as follows.

1. Marshal system call arguments into message registers

2. Issue the swi instruction

3. Unmarshal the system call results from the message registers

Steps 1 and 3 are specific to each system call, while step 2 is entirely generic (i.e. it is the same

for every system call). This suggests that we can synthesise the interface code by synthesising

that for the specific steps for each system call, and having them call into a fixed subroutine for

implementing step 2. This is the approach we took in this project, described in the following

section.
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2.3 A System Call DSL

While the subroutine for issuing the swi instruction is fixed for every system call, each system

call is encoded differently by placing specific values and arguments into the message regis-

ters before calling this subroutine. The code for marshalling the system call arguments into

the message registers is relatively straightforward in functionality, but tedious and potentially

error prone to write manually for every system call. seL4 in particular supports a wide vari-

ety of system calls, because it implements a very flexible and fine-grained API in which kernel

services are exposed through typed abstractions called kernel objects, each of which supports

corresponding methods. Table 2.1 and Table 2.2 list the 44 seL4 system calls present in the

current version of seL4 (reference manual version 4.0.0) on the ARM architecture.

To alleviate this problem,we developed an XML-based domain specific language (DSL) in which

each system call could be specified. From this DSL, we then automatically synthesise C code for

marshalling and unmarshalling system call arguments and results respectively. Specifically, take

the system call TCB - Set Priority from Table 2.1 as an example. Its XML-based DSL description

is depicted in Figure 2.1.

<api>
  <interface name="seL4_TCB">
    <method id="TCBSetPriority" name="SetPriority">
      <param dir="in" name="priority" type="uint8_t"/>
    </method>
  </interface>
</api>

Figure 2.1: The DSL description of the TCB - Set Priority system call.

From this DSL description. we automatically synthesise the definition and implementation of

the following C function, seL4_TCB_SetPriority(), whose generated implementation ap-

pears in Figure 2.2:

i n t seL4_TCB_SetPriority( seL4_TCB service , u i n t 8 _ t priority);

Lines 3–8 marshal the system call data; line 11 invokes the manually-written seL4_Call()
function, which performs the swi; and finally line 13 simultaneously unmarshals the system

call results and then returns.

The function seL4_Call() was written manually in a mixture of C and inline assembly. Its

compiled assembly implementation is depicted in Figure 2.3. Recall that, in order to allow con-

venient access by the kernel on the ARM platform, the first four message registers (MRs) are

passed between the application and kernel in the physical CPU registers r2, r3, r4 and r5.
seL4_Call() performs the same functionality for every system call: it copies the first four

MRs into CPU registers r2, r3, r4 and r5 for quick access by the kernel, and then invokes the

swi instruction. After the system call has returned, it does the reverse, copying the contents

© 2016 CSIRO Verified OS Interface Code Synthesis | 11
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Object-Type Method Name

CNode Cancel Badged Sends

CNode Copy

CNode Delete

CNode Mint

CNode Move

CNode Mutate

CNode Revoke

CNode Rotate

CNode Save Caller

Domain Set Set

IRQ Control Get

IRQ Handler Acknowledge

IRQ Handler Clear

IRQ Handler Set Notification

TCB Bind Notification

TCB Configure Single Stepping

TCB Configure

TCB Copy Registers

TCB Get Breakpoint

TCB Read Registers

TCB Resume

TCB Set Breakpoint

TCB Set CPU Affinity

TCB Set IPC Buffer

TCB Set Maximum Controlled Priority

TCB Set Priority

TCB Set Space

TCB Suspend

TCB Unbind Notification

TCB Unset Breakpoint

TCB Write Registers

Untyped Retype

Table 2.1: seL4 Architecture Independent System Calls.

of r2, r3, r4 and r5 into the message registers of the thread’s IPC buffer and returns the result

of the system call.
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1 i n t seL4_TCB_SetPriority( seL4_TCB service , u i n t 8 _ t priority)
2 {
3 seL4_Message In fo_t tag =
4 seL4_MessageInfo_new(TCBSetPriority , 0, 0, 1);
5 seL4_Message In fo_t output_tag;
6

7 /* Marshal input parameters. */
8 seL4_SetMR(0, (priority & 0xff));
9

10 /* Perform the call. */
11 output_tag = seL4_Call(service , tag);
12

13 r e tu rn seL4_MessageInfo_get_label(output_tag);
14 }

Figure 2.2: DSL-Generated implementation of the seL4_TCB_SetPriority() function.

1 mvn r3, #12288 ; 0x3000
2 l d r ip, [r3, #-4095] ; 0xfffff001
3 push {r4, r5, r7}
4 mvn r7, #0
5 ldmib ip, {r2, r3, r4, r5}
6 swi 0x00ffffff
7 mvn r0, #12288 ; 0x3000
8 l d r ip, [r0, #-4095] ; 0xfffff001
9 mov r0, r1

10 stmib ip, {r2, r3, r4, r5}
11 pop {r4, r5, r7}
12 bx lr

Figure 2.3: The compiled (assembly) implementation of the seL4_Call() function.

© 2016 CSIRO Verified OS Interface Code Synthesis | 13
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Object-Type Method Name

ARM ASID Control Make Pool

ARM ASID Pool Assign

ARM Page Clean Data

ARM Page Invalidate Data

ARM Page Clean and Invalidate Data

ARM Page Unify Instruction Cache

ARM Page Map

ARM Page Remap

ARM Page Unmap

ARM Page Get Address

ARM Page Table Map

ARM Page Table Unap

Table 2.2: seL4 ARM Architecture Dependent System Calls.

2.4 Verification Approach

We synthesise each system call by automatically generating C code (e.g. Figure 2.2) that calls

a fixed assembly routine, seL4_Call() (see Figure 2.3).

Verifying the system call code therefore requires verifying both the automatically generated C

code as well as the implementation of seL4_Call().

Reasoning about seL4_Call() has to be performed at the level of its assembly implementa-

tion, since it is only at this level that its implementation has meaning.

Therefore, one way to automatically verify the correctness of the synthesised system call code

is to:

1. Automatically verify the generated C code for each system call.

2. Verify the fixed assembly implementation of seL4_Call() once, manually.

This was the original approach we took for this project. While this approach was ultimately su-

perseded by the work described in the Chapter 3 for reasons we discuss shortly in Section 2.5,

webriefly describe each of these steps. In particular,many of the themes encountered in verify-

ing the assembly code for seL4_Call(), such as encoding the C compiler’s calling convention,

reappear in Chapter 3.

2.4.1 C Code Verification

For easy and high-fidelity reasoning about C code, the AutoCorres [Greenaway et al., 2014]

tool provides an ideal foundation for reasoning about the generated interface code.
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C Code Correctness Code correctness is expressed using Hoare triples, which are statements

of the form:

{ P } f {Q } (2.1)

Here, f is a function (e.g. seL4_TCB_SetPriority() in Figure 2.2) while P and Q are pred-

icates, called the precondition and postcondition respectively. Equation 2.1 says that if func-

tion f is called in a situation satisfying the condition P then, when f completes, the condi-

tion Q will be true. P captures assumptions made by the function f , while Q captures the

effect of calling f (i.e. f ’s behaviour).

As an example, consider the trivial function inc() implemented in Figure 2.4. This function

takes an int as its argument and simply increments it, returning the incremented result.

1 i n t inc( i n t x)
2 {
3 r e tu rn (x + 1);
4 }

Figure 2.4: A trivial C function for incrementing an integer.

The following Hoare triple captures the correctness of this function:

{ x < INT_MAX } inc(x) { λr. r = x + 1 } (2.2)

Note the initial assumption that the argument x be less than the maximum integer INT_MAX.
Overflow of (signed) integers in C is undefined behaviour, which we must provably rule out if

we are to reason formally about C code. This assumption captures the idea that inc is correct

only when called with an argument which will not overflow when incremented.

The postcondition refers to the function’s return value as r and states that it will be one larger

than the initial argument x, as expected.

TheAutoCorres tool allows one to reason faithfully about C code, including low-level details like

the absence of undefined behaviour, integer overflow, memory safety etc. One writes Hoare

triples to specify the correctness of their C code, which can then be proved semi-automatically

in the Isabelle theorem prover Nipkow et al. [2002]. This provides an extremely trustworthy

environment for C code verification.

Reasoning about the Generated C Code Reasoning automatically about the generate C code

requires having Hoare triples (correctness statements) proved for the various helper func-

tions that the generated C code calls, such as the fixed function seL4_SetMR() called by

seL4_TCB_SetPriority() in Figure 2.2.
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Consider the seL4_SetMR() function as an example for illustration purposes. This function

sets the value of a message register in the thread’s IPC buffer. Specifically, when

seL4_SetMR(n, v)

is called, n denotes the message register that should be set while v is the value that the par-

ticular register should be set to. This call sets the value of the nth message register (numbered

from 0) to v.

We proved the following correctness statement about the manually-written seL4_SetMR()
function, which we can then use to help reason automatically about generated functions like

seL4_TCB_SetPriority().

{ globals_frame_intact ∧ ipc_buffer_valid ∧
0 ≤ n ∧ n < seL4_MaxMsgLength ∧ P (setMR n v) }

seL4_SetMR(n, v)
{ P }

The first four of the five conjuncts in the precondition are assumptions that seL4_SetMR()
makes. Like seL4_Call() (see Figure 2.3), seL4_SetMR() retrieves the pointer to the call-

ing thread’s IPC buffer from the globals frame, a region of memory at a fixed location in the

thread’s virtual address space (specifically at address 0xfffff001). The first assumption, glob-

als_frame_intact states that this location in memory does indeed hold the address of the

thread’s IPC buffer. This assumption will always be true in practice since the kernel places the

IPC buffer address in this location when it schedules the thread, and ensures that the globals

frame is not writable to the thread. However, it must be stated explicitly when reasoning about

seL4_SetMR() and the functions that call it, sincewe reason about these functions in isolation
from the kernel in order to keep the reasoning tractable.

The second assumption states that there is a valid IPC buffer at the location pointed to by the

IPC buffer pointer: again the kernel will ensure that this requirement is true but it must be

stated explicitly in order to reason about seL4_SetMR() in isolation. With these two assump-

tions, seL4_SetMR() is guaranteed to be able to update the thread’s message registers. The

third and fourth assumptions then state that the arguments n and v to seL4_SetMR(n,v) are

valid, specifically that n is in the range [0,seL4_MaxMsgLength), i.e. identifies a valid message

register.

The final conjunct of the precondition is P (setMR n v). It refers to P which is an arbitrary

postcondition. Specfically, this Hoare triple about seL4_SetMR() is in a form akin to aweakest

precondition transformer: given some postcondition P that is to be true after seL4_SetMR()
is executed, this Hoare triple calculates an appropriate precondition that must be true before

seL4_SetMR() is called in order to ensure that the postcondition P is true afterwards.

It states that P must hold for the result of calling the logical auxiliary function setMR with the

arguments n and v. Here setMR calculates the effects of updating the nth message register

16 | Verified OS Interface Code Synthesis © 2016 CSIRO

DISTRIBUTION A. Approved for public release: distribution unlimited.



by setting its value to v: given the current memory contents, it calculates the new memory

contents which are identical to the initial one except that thememory location holding the nth

message register now holds the value v.

By writing the correctness statement for seL4_SetMR() as a weakest precondition rule in this

style, we enable automatic reasoning about code that calls seL4_SetMR(), such as the gener-
ated C code (e.g. the function seL4_TCB_SetPriority()).

Reasoning about the generated C code will also requires us to automatically generate Hoare

triples that state correctness conditions for functions such as seL4_TCB_SetPriority(). We

return to this issue later in Section 2.5.

2.4.2 Assembly Code Verification

The seL4_Call() function is written in a mixture of C and inline assembly. Unlike for the gen-

erated C code, the easiest method of verifying its manually written implementation is at the

level of its assembly code semantics (the alternative would be a mixed assembly/C semantics

and precisemodel of the inline assembly code in C, which is possible, but less straightforward).

Its principal functions such as copyingmessage registers from the thread’s IPC buffer into physi-

cal CPU registers, and invoking the swi instruction to trigger the system call, which can be given

a straightforward semantics at the assembly level, whereas CPU register and instructions like

swi have no representation at the level of C semantics.

Therefore, to verify this function, we first compile it to assembly as depicted in Figure 2.3.

Once represented entirely in assembly code, the semantics of this function become relatively

straightforward:

Lines 1–2 Calculate the address of IPC Buffer pointer, place it into the ip register (i.e. into r12)

Line 3 Save caller’s registers (in order to respect the C compiler’s calling convention)

Line 4 Place the value -1 (0xffffffff) into register r7 in accordance with the seL4 system call

interface

Line 5 Copy the first four message registers from the IPC buffer to CPU registers r2–r4,

Line 6 Perform the swi,

Lines 7-8 Reload the address of the IPC buffer pointer into the ip register

Line 9 Move the system call result value into r0 so it appears as the return-value of the C

function seL4_Call() (to respect the C compiler’s calling convention)

Line 10 Copy the values from CPU registers r2–r4 into the first four IPC buffer message regis-

ters,

Line 11 Restore the caller’s registers (in order to respect the C compiler’s calling convention)

Line 12 Return to the caller
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Of these 12 lines, four of them (namely lines 3, 9, 11 and 12) deal with the interface between

C and assembly. The remainder implement the seL4 system call encoding.

The function of each line of assembly that implements the interface expected by the kernel

is straightforward to state. Likewise, the conventions that this assembly code must follow to

correctly interface to the C functions it calls are also straightforward to state:

• It must save and restore the caller’s registers above r4 that is modifies (namely r4–r7)

• It must put the return-value into register r0

• Itmust leave registers r0 and r1 unmodified beforemaking the swi (since these registers
hold the values for the C arguments service and tag to the function seL4_Call() —

see line 10 of Figure 2.2 — which the kernel expects to appear in these registers)

Verifying this code therefore comes down to being able to give it a sufficiently precise seman-

tics against which these correctness conditions can be stated and then proved.

While the correctness of the generated C code should be automatically stated and proved, we

can afford to verify the assembly implementation of seL4_Call() manually, since it is itself

manually written and fixed for all system calls, i.e. will change only rarely.

To verify this code we first obtained the highly validated and highly detailed model of the ARM

assembly instruction set architecture by Fox andMyreen [2010], Fox [2015]. This formal model

precisely captures how the ARM CPU decodes and executes each instruction. The model is

written in the theorem prover HOL4 [Slind and Norrish, 2008].

To make use of it, we first translated it so that it could be interpreted by the Isabelle theo-

rem prover [Nipkow et al., 2002]. We then stated a Hoare triple expressing the correctness

of each individual instruction in the implementation of seL4_Call(). We manually proved

each Hoare triple by reasoning directly over the model of how the ARM ISA interprets each of

the instructions. Note that these Hoare triples were stated over the binary encodings of these

instructions, and so proving them required first proving that each binary instruction correctly

decoded to match the assembly represented in Figure 2.3, and then proving that the effect of

each line of assembly was as expected. That is, the final theorem is a Hoare-triple statement

about a binary string of bytes.

2.5 Limitations and Discussion

The two-pronged approach, mixing C and assembly verification, provided a useful proof-of-

concept that OS interface code could indeed by synthesised and its correctness stated and

proved with some degree of automation.

However, we ultimately abandoned this approach in favour of the work described in Chapter 3

due to the non-trivial limitations that we now describe.
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Generating Hoare Triple Correctness Statements One of the benefits of this approach is that

it allows reuse of existing, automatic C verification tools to automatically verify the generated

C code. However, this comes at the cost of having to state the correctness of the generated

code at this level of abstraction. Specifically, onemust ultimately generate Hoare triples for the

entirety of the generated C functions, e.g. seL4_TCB_SetPriority(). Such a Hoare triple of

the form:

{ P } seL4_TCB_SetPriority(service, priority) {Q }

captures assumptions that this functionmakes in the preconditionP . However, and as it turned

out problematically, its postconditionQmust capture not only the correct marshalling/unmar-

shalling of the system call data by the generated C code, but also the effects of the system call

itself. The system call semantics is described by the seL4 specification, and is itself a large and

complex formal artefact.

When working at the level of the C semantics, it is very difficult to disentangle these two. This

means each individual correctness specification for the generated C code would have to make

statements about the seL4 kernel behaviour and about interface code at the same time, which

makes it very difficult to generate these automatically.

Composing C and Assembly Proofs Another limitation of this approach is that the proofs

about the C code and those about the assembly implementation of seL4_Call() remain sep-

arate from each other, even though all proofs are carried out in the Isabelle theorem prover.

The first proofs talk about C semantics, while the second talk about the ARM ISA semantics.

Naturally the latter must talk about details of the C compiler’s calling convention, as discussed

above; however, those same details are not reflected in the C code semantics itself since it

purposefully abstracts away from those details.

Thus this approach leaves two sets of proofs: automatically generated ones about generated C

code, and manual ones about manually-written code, neither of which is formally connected

to the other. This inability to compose the proofs about the assembly code with those about

the generated C code reduces the trustworthiness of this approach, a themewe return to later

in this section.

Difficulty of Manual Reasoning over Assembly Model A third difficulty is the high level of

effort required to reason manually about the ARM implementation of seL4_Call(). Once
the ARM ISA model is translated from its original representation in the HOL4 prover, into the

Isabelle prover, we no longer have access to an existing and powerful set of tools for carrying

out proofs automatically over this model.

While this reduction in efficiency is not fatal, it does increase the difficulty of composing the

Hoare triples about each individual instruction: a task that is already automated in the original

model in the HOL4 theorem prover.
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Trustworthiness of the Assembly Model One final limitation of this approach is the trans-

lation of the ARM ISA model from HOL4 to Isabelle. Unlike the approach we describe in the

following chapter, this original translation does not certify that the ARM model when trans-

lated into Isabelle has the same meaning as it did originally in HOL4. This is unfortunate since

the model in HOL4 has been extensively validated by Fox and Myreen [2010], and so is rightly

considered extremely trustworthy.

Even though the translation to Isabelle is automatic, there is still the chance of it introducing

errors in the model in Isabelle. Since the value of the proofs about the ARM implementation

of seL4_Call() ultimately rest of the strength of the ARM ISA model, increasing the level of

trust in that model is highly desirable.

Summary Ultimately, trying to giveOS interface code a semantics at the C level is suboptimal.

This realisation led us to pioneer a different approach, which we describe in the following

chapter. This approach is based on the realisation that OS interface code can be given a high-

fidelity semantics entirely at the level of its assembly code, and that we can extend and apply

state-of-the-art methods for importing proofs from one theorem prover to another to allow us

to reason automatically at the assembly level in HOL4 and then reuse those results in Isabelle

without reducing trust.
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3 Reasoning Automatically About Assembly

As described in Chapter 2, the functionality of OS interface code is conceptually and algorithmi-

cally very simple. Essentially, it translates system calls made in the user-level program’s calling

convention to the low-level system call interface provided by the OS kernel. This involves mar-

shalling input parameters into the expected registers, making an appropriate invocation of the

underlying system-call interface, and un-marshalling any results. Due to its high-level simplic-

ity, it is unsatisfying to axiomatise a high-level specification of the interface code functionality:

potential bugs are invisible at all but the lowest levels of abstraction.

To formally model this functionality with sufficient fidelity to catch errors, our new approach is

to work directly at the assembly level, and ensure the assembly code being modelled is gener-

ated directly from the code that actually runs. By reasoning entirely at the assembly level, we

address the first two limitations described in Section 2.5, namely, the difficulty in generating

Hoare triples for C code that must capture the effects of assembly-only functionality (mar-

shalling/unmarshalling), and the difficulty in composing C and assembly proofs. Fortunately,

we can leverage existing tools for automatic reasoning about assembly code, in particular,

the machine-code decompilation toolchain by Magnus Myreen [Myreen et al., 2012, Myreen,

2008] which is integrated with high-fidelity machine-code ISA models by Anthony Fox [Fox,

2003, Fox and Myreen, 2010].

The machine-code decompilation toolchain is implemented in the HOL theorem prover [Slind

andNorrish, 2008], also known as HOL4, which provides a logic and reasoning framework com-

patible to the Isabelle/HOL theorem prover in which the bulk of the seL4 verificationwas done.

By using the toolchain in HOL4, we also overcome the last two limitations described in Sec-

tion 2.5, namely, the difficulty of manual reasoning over assembly code, and the trustworthi-

ness of the machine model. This is because the HOL4 toolchain is automatic and extensively

validated.

Using the HOL4-based toolchain for reasoning about assembly code, we reduce the problem

of reasoning about the seL4 OS interface code to the following tasks:

• Produce assembly code for the OS interface code (§3.1). This assembly code needs to be

in a form suitable for machine-code decompilation.

• Run the decompiler to produce low-level theorems about the functionality of the OS

interface assembly code (§3.2).

• Transfer the proofs produced in the previous step fromHOL4 to Isabelle/HOL (§3.3). This

involves proof-recording on the HOL4 side, and proof-replay on the Isabelle/HOL side,

as well as theory alignment work to bridge the gaps and differences in theory libraries

between the two theorem-proving systems.
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• Using the low-level assembly-code functionality theorems as a basis, prove a higher-level

statement about how making a call to the OS interface interacts with the assumptions

of the OS kernel proof (future work).

The third step is, perhaps surprisingly, the most involved one. However, much of the difficulty

is in building proof-transfer technology which is general-purpose and, since it solves the more

fundamental problemof sound proof transfer between different theoremproving systems, can

be re-used much more broadly in other projects.

3.1 Compiling the Interface Code to Assembly

As mentioned in Section 2.4, the seL4 interface code is a mixture of C code (synthesised from

the XML-based DSL) and assembly code (manually written). We would like to reason about

this code uniformly at the assembly level, which is the highest level where all of the code has

direct meaning. Our approach is to use the C compiler, which takes the mixed-level inputs and

produces a uniform binary, and then decompile the result into logic. The advantage of using

the compiler is that it is entirely automatic, so scales to handle changes in the synthesised C

code for different platforms, and it is fully realistic. The snag is that OS interface code is typically

marked as inline: in the final binary, the functionality of the interface code is spread to its

call sites and not easily separable into an independently verifiable function.

For the purpose of decompilation and verification, we can turn this inlining off and force the

compiler to produce an independent function for each item in the OS interface. This makes

the verification approach via decompilation possible. It is also possible to run systems with

this inlining turned off, although we would expect a performance hit. From the correctness

perspective, the difference between reasoning about inlined code and non-inlined code is easy

to delineate: if we trust the compiler’s inlining facility, then verification of the non-inlined code

carries over to systems with the inlining turned on. Compared to the old approach, this is not

a reduction in trustworthiness: the old approach already trusted the compiler to be correct —

the current approach reduces this need for trust, or enables us to remove it completely for a

performance trade-off (turning off inlining).

Figure 3.1 shows an example of the result of compilation with inlining turned off, for the func-

tion seL4_TCB_SetPriority(). Although we do not inline seL4_TCB_SetPriority() itself

at its calls sites, we do still inline calls within its definition. The bulk of the code is made up of

the (now inlined) call toseL4_Call(). However, importantly, themarshalling code (essentially,

an inlined call to seL4_SetMR()) is also included. Note that some of the assembly mnemonics

here are newer synonyms compared to Figure 2.3, e.g., svc instead of swi.
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674: e92d40b0 push {r4, r5, r7, lr}
678: e3e0ea03 mvn lr, #12288 ; 0x3000
67c: e1a02001 mov r2, r1
680: e51ecfff l d r ip, [lr, #-4095] ; 0xfffff001
684: e3e07000 mvn r7, #0
688: e28c3008 add r3, ip, #8
68c: e58c1004 s t r r1, [ip, #4]
690: e59f1014 l d r r1, [pc, #20] ; 6ac <seL4_TCB_SetPriority+0x38>
694: e8930038 ldm r3, {r3, r4, r5}
698: efffffff svc 0x00ffffff
69c: e51ecfff l d r ip, [lr, #-4095] ; 0xfffff001
6a0: e1a00621 l s r r0, r1, #12
6a4: e98c003c stmib ip, {r2, r3, r4, r5}
6a8: e8bd80b0 pop {r4, r5, r7, pc}
6ac: 00006001 .word 0x00006001

Figure 3.1: The compiled (assembly) implementation of seL4_TCB_SetPriority() with inlining off.

3.2 Decompilation into Logic

The machine-code decompilation framework [Myreen et al., 2012] automates the process of

composing Hoare triples for individual assembly instructions, to obtain a single Hoare triple for

a sequence of assembly code. This includes decoding the binary instructions to their assembly

representation. Thus, the automatic framework in HOL4 replaces themanual work for verifying

assembly code described in Section 2.4.2. The Hoare triple for each instruction is generated

from the high-fidelity and well-validated ARMv7 ISA model in HOL4, and the composition is

performed by (automatic) forward reasoning within the theorem prover, yielding trustworthy

results.

The decompilation framework does not support the swi (a.k.a. svc) instruction that signals an
interrupt to switch the machine into privileged mode. Therefore, for each OS interface func-

tion, we produced two composed correctness theorems: one for the snippet of assembly code

before entering the kernel via svc, and one for the snippet of assembly code after the kernel

returns. This is an appropriate split for the interface code correctness theorems, since execu-

tion of the seL4 kernel is verified separately at a higher level of abstraction. This split also neatly

delineates a limitation of the previous approach: it is precisely the interface point between au-

tomatically generated specification for interface code and the high-level manual specification

of seL4 behaviour.

An example of the kind of theorem generated by the framework, in particular as produced for

the first half of seL4_TCB_SetPriority() (before the svc instruction) is shown in Figure 3.2

below. The top-level assertion in this theorem is of the form TRIPLE M state code state′,
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which essentially asserts that code transforms state to state′, according to the machine model

M . The code is represented as a set of bytes and their locations in memory, so for example

the numbers (1652w,0xE92D40B0w) indicates byte e92d40b0 at location 1652; note that the

code is exactly as listed in Figure 3.1. The variables appearing in state consist of a Boolean

assertion, pre, which captures the weakest precondition for the Hoare triple to hold, and the

state of the machine: the program counter p, the other registers, the memory, and the subset

of memory considered to be the stack. The expression denoting state′ builds up the required

precondition step by step, for example, the first let requires the initial program counter p to

be set to 1652. There is approximately one let for each instruction in straight-line assembly

code, each of which captures local changes to the machine state for that instruction as well as

collecting the required preconditions.

These theorems capture a high-fidelity but low-level semantics for straight-line assembly code.

Importantly, they are generated automatically and are assertions over a validated machine

model (represented by (arm_assert,ARM_MODEL) in Figure 3.2). It would be easy to post-

process these theorems in a theorem prover (either HOL4, where they are generated, or Is-

abelle/HOL) to, for example, collect the preconditions for individual instructions spread over

several lets into a single precondition for the whole block; we have not yet attempted any

such post-processing, which would be the first step of integrating the generated specifications

into the existing seL4 proofs. By manipulating such theorems directly within a theorem prover,

we maintain a strong semantic link back to the validated machine model.

3.3 Transferring Results Between Theorem Provers

Once we have produced the TRIPLE theorems described in the previous section for each of

the seL4 interface functions (Table 2.1 etc.), we ultimately hope to post-process them and con-

nect them to the seL4 model in Isabelle/HOL. The theorems are proved by custom automation

(the decompilation toolchain) in HOL4, and HOL4 implements a closely related logic to that

of Isabelle/HOL, namely, classical higher-order logic. In this section, we describe our method-

ology for automatically porting proofs from HOL4 to Isabelle/HOL based on recording and re-

playing proof traces (Section 3.3.1) and producing portable packages in OpenTheory format

[Hurd, 2011] (Section 3.3.2). As part of this work, we developed infrastructure for importing

OpenTheory packages into Isabelle/HOL.We alsomade progress (Section 3.3.3) onmaking the

results of such imports idiomatic in the target prover (Isabelle/HOL), which is a necessary step

to facilitate connecting imported theorems with existing developments.
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` TRIPLE (arm_assert ,ARM_MODEL)
(pre,p,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,n,z,c,

v,mode,dmem,memory ,dom_stack ,stack)
{(1652w,0xE92D40B0w); (1656w,0xE3E0EA03w); (1660w,0xE1A02001w);

(1664w,0xE51ECFFFw); (1668w,0xE3E07000w); (1672w,0xE28C3008w);
(1676w,0xE58C1004w); (1680w,0xE59F1014w); (1684w,0xE8930038w);
(1692w,0xE51ECFFFw); (1696w,0xE1A00621w); . . .}

(let (pre,p,r13,stack) =
(pre ∧ (p = 1652w) ∧ aligned 2 r13 ∧

r13 - 16w ∈ dom_stack ∧ r13 - 15w ∈ dom_stack ∧
r13 - 12w ∈ dom_stack ∧ r13 - 8w ∈ dom_stack ∧ . . .

∧ r13 - 1w ∈ dom_stack ,1656w,
r13 - 16w,
WRITE32 (r13 - 16w) r4

(WRITE32 (r13 - 12w) r5
(WRITE32 (r13 - 8w) r7

(WRITE32 (r13 - 4w) r14 stack)))) in
let (pre,p,r14) = (pre ∧ (p = 1656w),1660w,0xFFFFCFFFw) in
let (pre,p,r2) = (pre ∧ (p = 1660w),1664w,r1) in
let (pre,p,r12) =

(pre ∧ (p = 1664w) ∧ aligned 2 (r14 - 3w) ∧
r14 - 4095w ∈ dmem ∧ r14 - 4094w ∈ dmem ∧
r14 - 4093w ∈ dmem ∧ r14 - 4092w ∈ dmem ,1668w,
READ32 (r14 - 4095w) memory) in

let (pre,p,r7) = (pre ∧ (p = 1668w),1672w,0xFFFFFFFFw) in
let (pre,p,r3) = (pre ∧ (p = 1672w),1676w,r12 + 8w) in
let (pre,p,mem ') =

(pre ∧ (p = 1676w) ∧ aligned 2 r12 ∧ r12 + 4w ∈ dmem ∧
r12 + 5w ∈ dmem ∧ r12 + 6w ∈ dmem ∧ r12 + 7w ∈ dmem,
1680w,WRITE32 (r12 + 4w) r1 memory) in

let (pre,p,r1) = (pre ∧ (p = 1680w),1684w,24577w) in
let (pre,p,r3,r4,r5) =

(pre ∧ (p = 1684w) ∧ r3 ∈ dmem ∧ aligned 2 r3 ∧
r3 + 1w ∈ dmem ∧ r3 + 2w ∈ dmem ∧ . . .

∧ r3 + 11w ∈ dmem ,1688w,READ32 r3 mem',
READ32 (r3 + 4w) mem',READ32 (r3 + 8w) mem ') in

(pre,p,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,n,z,
c,v,mode,dmem,mem',dom_stack ,stack))

Figure 3.2: Generated correctness theorem for the first half of seL4_TCB_SetPriority().
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3.3.1 Proof traces

Both of the theorem provers we are concerned with, HOL4 and Isabelle/HOL, follow the LCF-

style architecture. This means that every theorem produced by the system ultimately origi-

nates from calls to a small set of primitive inference rules implemented in the logic kernel of

the theorem prover. The primary purpose of the LCF architecture is trustworthiness: one only

needs to ensure that the relatively small logic kernel is implemented correctly to obtain, by an

architectural argument, soundness of the whole theorem proving system.

However, another ramification of the LCF architecture is that every theorem produced by the

system has a proof represented by the sequence of calls to inference rules in the logic kernel

that led to that theorem’s creation. By instrumenting the kernel to record these calls, we obtain

a proof trace. Provided the inference rules of one theorem prover’s logic kernel can be simu-

lated in another prover, these proof traces can be replayed in the second prover to produce a

copy of the theorem in the second prover without compromising the soundness guarantees of

the LCF architecture. Using proof traces to record and replay proofs is a well-known approach

for LCF-style provers; see, for example Kaliszyk and Krauss [2013].

The novelty in our investigation, therefore, is not in using proof traces for theorem transfer, but

in identifying and beginning to address the fact that proof traces are not enough. As described

in the following sections, the problem is in ensuring imported theorems connect usefully to

natively proved theorems in the target theorem prover. Proof traces do not, on their own,

handle the variation in theory libraries andmathematical concepts between different theorem

provers.

3.3.2 OpenTheory portable theory packages

The OpenTheory project1 aims to support sharing formal developments between all theorem

provers based on (classical) higher-order logic. The project consists of three aspects. The first

is a prover-independent proof-trace format for higher-order logic proofs. The second is the

concept of a theory package: each package is a formal derivation of results (new theorems

and definitions) from assumptions (previously-proved theorems and previously-defined con-

stants). Theory packages can be composed: the results of one package can be mapped onto

the assumptions of another, via a theory interpretation that renames constants appropriately,

to produce a composed package with the intermediate assumptions removed. Thus a package

is either atomic (corresponding directly to a recorded proof trace) or a composition of mul-

tiple packages. The final aspect of OpenTheory is a standard, well-organised namespace for

commonly defined constants and a standard library of commonly used theories.

It is these latter two aspects, compositionality and a standard library, thatmakeOpenTheory an

1http://www.gilith.com/research/opentheory/
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appealing basis for long-term proof-sharing infrastructure. The typical approach to proof trans-

fer in the past has involved engineering a one-off proof-trace based solution fit to the task at

hand. Inevitably, such solutions become deprecated as the formal developments they are con-

necting undergo further development. By aiming for portable theory packages and re-usable

infrastructure based on a common format, we think that a connection based on OpenTheory

will be more reliable and sustainable.

Themachine-codedecompilation toolchain inHOL4depends on a large fractionof the standard

libraries included in theHOL4 distribution, including, for example, theories of integers, floating-

point numbers, fixed-width words, as well as basic theories for Booleans, natural numbers,

and lists. It also, of course, depends on the substantial formalisation of the ARM machine ISA

model. Therefore, as a pre-requisite to recording re-usable proof traces for the assembly-code

theorems from Section 3.2, we first created OpenTheory packages for all its dependencies in

the HOL4 distribution. In the remainder of this section, we describe at a high level how we

created and organised these packages, and how we import them into Isabelle/HOL.

Exporting HOL4 library packages To export OpenTheory packages from the HOL4 prover, we

use a switch in the HOL4 logic kernel to turn on proof-trace recording. (We built on and im-

proved prior work by the second author on recording HOL4 proofs in the OpenTheory proof-

trace format.) Initially, we record proofs exactly as they occur in HOL4, with HOL4-specific con-

stant names. This can be done automatically, without touching the proof script files used for

building the standard HOL4 distribution. Subsequently, we use theory interpretations to map

constants, wherever possible, into the OpenTheory standard namespace. To achieve this post-

recording processing, we use the existing infrastructure provided by the OpenTheory project

in the opentheory tool.

Some of the logical content of the HOL4 libraries is already covered by the OpenTheory stan-

dard library. The standard library, whose package name is base, aims to be the intersection

of libraries supported by all the major HOL-based provers. In support of our aim to produce

reusable theory packages, we would rather not produce HOL4-specific derivations of this log-

ical content, which would deviate from the standard library’s organisation. However, this re-

quires a little more care than simply recording the HOL4 libraries as they are.

Our solution is to create a bridging theory, called hol-base, that assumes the results pro-

vided by base and proves the results required by the rest of the HOL4 dependencies. The

construction of hol-base involves importing the results of base into HOL4, calculating the set

of theorems used by the HOL4 library that are not already provided by base, and re-proving

those theorems using only base theorems as assumptions. The final step in this construction

is currently a little tedious, however we believe there is room for further automation. The ap-

proach has good leverage in that the HOL4 library packages (which now depend only on base
via hol-base) become reusable by any theorem prover supporting base.
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The packages resulting from this work are now available online as part of a public OpenTheory

repository2. In particular, see the machine-code-straightline package and its dependen-

cies (which include the ARM model).

Importing OpenTheory packages into Isabelle/HOL To import OpenTheory packages, one

starts with its proof trace. (The opentheory tool can produce a proof trace for a composed

package by stitching together the traces for the underlying atomic packages.) The semantics

of an OpenTheory proof trace3 is specified by an abstractmachine representing a generic theo-

rem prover’s logic kernel. We simulate each of the inference rules of this virtual machine using

Isabelle/HOL’s logic kernel, which is reasonably straightforward.

OpenTheory is designed to be easy to import for any theorem prover with a native version of

the logical content of the base standard library package. A little care is required to target the

correct native constants in Isabelle/HOL when replaying OpenTheory proofs. For example, the

base package includes a constant called List.reverse and various theorems about it, which

can be referred to by packages that depend on base. When replaying such a package, the

import machinery needs to replace any reference to List.reverse with the correct function

(rev) in the native Isabelle/HOL library. When a theorem about List.reverse is required

during replay, it may need to be proved either on-the-fly automatically (from existing theorems

in Isabelle/HOL’s database) or handed back to the user for a (usually simple) manual proof. This

process is essentially the inverse of constructing the bridging theory (hol-base) for export.

For simple renamings (such as List.reverse to rev), replacement during import is sufficient.

However, in some cases there are more significant deviations between the formal develop-

ments of some concept in different theorem provers’ libraries. We turn to some examples

of these alignment problems, and our ideas for handling them, in the next section. Up to

alignment, we have successfully imported all the automatically produced assembly-code the-

orems (such as in Figure 3.2) from HOL4 into Isabelle/HOL, via proof-trace replay of reusable

OpenTheory packages.

3.3.3 Aligning theory libraries

To illustrate the alignment problem, let us consider first a simple example: natural number

numerals. The standard definition of natural numbers in higher-order logic is, essentially, an

inductive datatype with constructors 0 and Suc. Considered as numerals, this is a unary rep-

resentation: the size of a term representing a number grows in linear proportion to the size

of the number, e.g., 4 is represented as Suc(Suc(Suc(Suc(0)))). This is inefficient—large

term sizes slow down interactive theorem proving—so most theorem provers also provide a

2http://opentheory.gilith.com/packages/
3documented at http://www.gilith.com/research/opentheory/article.html
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binary numeral representation and normalise terms to use it wherever possible. The precise

choice of representation, however, is a design decision with multiple options. Isabelle/HOL

uses traditional bits (bit0 and bit1), where 4 is bit0(bit0(bit1(0))), whereas HOL4 uses
an alternative encoding (bit1 and bit2) where 4 is bit2(bit1(0)). The OpenTheory stan-

dard library uses the traditional representation like Isabelle/HOL.

When exporting HOL4 theories as OpenTheory packages on top of base, we must choose

whether those packages should define the bit2 constant and represent numerals using it,

or whether work should be done to convert all numerals into the traditional format. If we

create packages that expose bit2, then on import into Isabelle/HOL the resulting theorems

will not be compatible with much of Isabelle/HOL’s infrastructure (e.g., the simplifier, the term

pretty-printer, and numerical decision procedures) that expects numerals in the traditional for-

mat. However, expunging bit2 entirely from proofs on the HOL4 side might require significant

engineering.

Our solution in this case is to leave most of the HOL4 proofs intact, but do some additional

automatic forward proof on just the top-level desired theorems (the TRIPLE theorems for the

OS interface assembly functions). The job of the automation is to rewrite numerals from one

format into the other. More specifically, we define a version of bit0 in HOL4 and write a small

piece of automation to prove an equation between a HOL4 numeral and its traditional coun-

terpart, which can then be used as a rewrite rule. The result is that the OpenTheory packages,

and the theorems imported into Isabelle/HOL, do refer to bit2, but only inside proofs: the

theorems of interest have bit2 removed and are suitable for further processing by native Is-

abelle/HOL tools.

Our solution for numerals is possible because the change in representation happens within

a single type (natural numbers), which is shared between both provers (and the OpenTheory

standard library). Specifically, this allows us to make local changes to theorems at the relevant

subterms. Things becomemore difficult when the difference between the two libraries is more

substantial as in the following.

Our second example is the representation of sets: in HOL4, sets are identified with predicates,

so a set with elements of type 'a is represented by its characteristic function of type 'a =>
bool; in Isabelle/HOL, sets are represented directly by a new type, i.e., 'a set. In this case

also, the OpenTheory standard library matches the Isabelle/HOL convention. Recall that in an

assertion of the form TRIPLE M state code state′, the code is represented as a set of (address,

encoded instruction) pairs. Thus in HOL4, the third argument to TRIPLE is a predicate, namely,

the characteristic function of the code set. On import into Isabelle/HOL, we expect constants

like TRIPLE, which are specific to the machine-code decompilation toolchain, to be defined as

part of the proof replay. However, to be able to use Isabelle/HOL’s native set operators (union,

intersection, etc.), we want the third argument to TRIPLE to be a set, not a predicate.

We have not yet implemented any approach to resolving alignment problems of this nature,
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andwould hope to investigate them as future work. Ideally, wewould like to treat sets in a sim-

ilar way to numerals: with a little bit of additional forward proof prior to export into OpenThe-

ory. This is desirable because it is unintrusive—the original proofs stay intact—and separates

concerns. However, we cannot get away with a simple rewrite rule: in this case, an alterna-

tive version of the TRIPLE constant needs to be defined at some point, with a different type

from the original. We expect finding a neat solution to this kind of alignment problem to sub-

stantially improve the viability of reliable proof transfer between different theorem proving

systems.
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4 Conclusion

4.1 Summary of Results

The project set out to automatically produce OS interface code, to automatically produce OS

interface code specifications, and to automatically produce proofs that the code satisfies these

specifications. The project additionally had the stretch goal of integrating these proofs with the

seL4 microkernel specification.

We achieved the three main goals first in the originally proposed mixed C/assembly approach,

and, after recognising a number of limitation of this approach, a second time in a more trust-

worthy, flexible and foundational pure assembly verification approach, using sound theorem

transfer from the HOL4 to the Isabelle/HOL proof system. We did not yet achieve the stretch

goal of proof integration with seL4, but we believe that the new approach provides the neces-

sary foundations for doing so.

4.2 Implications of these Results

The current state of the work means that we can automatically get proved properties about

microkernel OS interface code in the theorem prover Isabelle/HOL based on a highly validated

and trustworthy assembly verification engine in the HOL4 theorem prover.

This in turn means that we can now reason about the effects of such interface code formally

in Isabelle/HOL.

With code, specification, and proofs all being generated from the same set of tools, there is a

remaining risk that all three artefacts reflect exactly the same unexpected behaviour. However,

the proof chain means that any deviations from expected behaviour are necessarily reflected

in the specification. That is, defects cannot remain hidden in inscrutable generated code, but

are exposed at the specification levels, and validation can be reduced to this specification level.

Integration with the rest of the seL4 proofs in future work would provide such additional vali-

dation for the generated specifications and give additional assurance that they correctly reflect

the expected behaviour.

Beyond the immediate scope of this project of OS interface code, our new solution approach

has more wide-ranging implications for the power of automated reasoning tools available for

interactive software verification. While sound theorem transfer between the HOL4 and Is-

abelle/HOL systems has been achieved in the past for smaller artefacts, this is the first time

we are aware of that an industrial-sized specification such as the Cambridge ARM model and
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powerful reasoning tools such as the ones byMyreen et al. [2012] have been used successfully

for a real verification. Our existing collaborations with Cambridge and the OpenTheory team

were instrumental in achieving this connection.

We think this result provides exciting opportunities for further work in increasing the reach of

reasoning tools for high-assurance software development.

4.3 Future Work

While the project was more successful than initially planned for in terms of reaching its main

objectives twice and pioneering a strong usable connection between two of the leading theo-

rem proving systems in the field, there is more work required to fully complete the objective

of fully automated high-assurance interface code.

The main two areas for further work are:

• Proof Integrationwith seL4.As indicated above,while themain goals of the projectwere

achieved and we demonstrated that the approach works, the stretch goal of integrating

the OS interface proofs with the seL4 proof was not. Doing so would be necessary to

use the results in practice for connecting new user-level proofs to the existing kernel-

level proofs to achieve end-to-end high-assurance systems. It would also provide the

necessary validation that the generated specification artefacts do reflect the expected

behaviour of the interface code.

• Complete Tool and Library Integration between HOL4 and Isabelle/HOL. The exciting

new proof-preserving connection via OpenTheory from HOL4 into Isabelle/HOL that this

project pioneered is at a stage where we can show that the approach works for this

particular case, but more work is needed to demonstrate that this kind of connection

can achieve a full fusion of the reasoning power of the two proof systems. Previous ap-

proaches demonstrated proof transport between the systems in principle, but could not

overcome the problem of librarymismatch and conceptmismatch between the systems.

Our approach has the concrete potential for doing that and for achieving a lasting impact

on the ability of the field to increase the productivity of formal verification engineers in

high-assurance software.
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